Alternating direction augmented Lagrangian methods for semidefinite programming
نویسندگان
چکیده
We present an alternating direction method based on an augmented Lagrangian framework for solving semidefinite programming (SDP) problems in standard form. At each iteration, the algorithm, also known as a two-splitting scheme, minimizes the dual augmented Lagrangian function sequentially with respect to the Lagrange multipliers corresponding to the linear constraints, then the dual slack variables and finally the primal variables, while in each minimization keeping the other variables fixed. Convergence is proved by using a fixed-point argument. A multiple-splitting algorithm is then proposed to handle SDPs with inequality constraints and positivity constraints directly without transforming them to the equality constraints in standard form. Finally, numerical results for frequency assignment, maximum stable set and binary integer quadratic programming problems are presented to demonstrate the robustness and efficiency of our algorithm.
منابع مشابه
SDPNAL \(+\) : a majorized semismooth Newton-CG augmented Lagrangian method for semidefinite programming with nonnegative constraints
Abstract In this paper, we present a majorized semismooth Newton-CG augmented Lagrangian method, called SDPNAL+, for semidefinite programming (SDP) with partial or full nonnegative constraints on the matrix variable. SDPNAL+ is a much enhanced version of SDPNAL introduced by Zhao et al. (SIAM J Optim 20:1737–1765, 2010) for solving generic SDPs. SDPNAL works very efficiently for nondegenerate S...
متن کاملModified alternating direction method of multipliers for convex quadratic semidefinite programming
The dual form of convex quadratic semidefinite programming (CQSDP) problem, with nonnegative constraints on the matrix variable, is a 4-block convex optimization problem. It is known that, the directly extended 4-block alternating direction method of multipliers (ADMM) is very efficient to solve this dual, but its convergence are not guaranteed. In this paper, we reformulate it as a 3-block con...
متن کاملA Survey of Numerical Methods for Nonlinear Semidefinite Programming
Nonlinear semidefinite programming (SDP) problems have received a lot of attentions because of large variety of applications. In this paper, we survey numerical methods for solving nonlinear SDP problems. Three kinds of typical numerical methods are described; augmented Lagrangian methods, sequential SDP methods and primal-dual interior point methods. We describe their typical algorithmic forms...
متن کاملLinear Rate Convergence of the Alternating Direction Method of Multipliers for Convex Composite Programming*
In this paper, we aim to prove the linear rate convergence of the alternating direction method of multipliers (ADMM) for solving linearly constrained convex composite optimization problems. Under a mild calmness condition, which holds automatically for convex composite piecewise linear-quadratic programming, we establish the global Q-linear rate of convergence for a general semi-proximal ADMM w...
متن کاملLocal convergence of an augmented Lagrangian method for matrix inequality constrained programming
We consider nonlinear optimization programs with matrix inequality constraints, also known as nonlinear semidefinite programs. We prove local convergence for an augmented Lagrangian method which uses smooth spectral penalty functions. The sufficient second-order no-gap optimality condition and a suitable implicit function theorem are used to prove local linear convergence without the need to dr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Math. Program. Comput.
دوره 2 شماره
صفحات -
تاریخ انتشار 2010